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A B S T R A C T

Alzheimer’s Disease (AD) is a worldwide concern impacting millions of people, with no effective treatment
known to date. Unlike cancer, which has seen improvement in preventing its progression, early detection
remains critical in managing the burden of AD. This paper suggests a novel AD-DL approach for detecting early
AD using Deep Learning (DL) Techniques. The dataset consists of pictures of brain magnetic resonance imaging
(MRI) used to evaluate and validate the suggested model. The method includes stages for pre-processing, DL
model training, and evaluation. Five DL models with autonomous feature extraction and binary classification
are shown. The models are divided into two categories: without Data Augmentation (without-Aug), which
includes CNN-without-AUG, and with Data Augmentation (with-Aug), which includes CNNs-with-Aug, CNNs-
LSTM-with-Aug, CNNs-SVM-with-Aug, and Transfer learning using VGG16-SVM-with-Aug. The main goal is to
build a model with the best detection accuracy, recall, precision, F1 score, training time, and testing time. The
dataset is used to evaluate the recommended methodology, showing encouraging results. The experimental
results show that CNN-LSTM is superior, with an accuracy percentage of 99.92%. The outcomes of this study
lay the groundwork for future DL-based research in AD identification.
. Introduction

AD accounts for 70% of dementia cases worldwide, making it the
ost prevalent kind of dementia. It is an irreversible neurological

ondition that gradually impairs cognitive ability. AD is a huge global
oncern that affects millions of people despite the lack of a proven treat-
ent protocol. While treatment options for certain diseases, such as

ancer, have advanced, early detection remains critical for adequately
anaging AD (Khojaste-Sarakhsi et al., 2022; Vogt et al., 2023; Saleem

t al., 2022). According to research, AD is assumed to begin at least
0 years before symptoms manifest, with minute, subtle alterations in
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the brain. Because of injured or killed nerve cells (neurons) in specific
brain regions, people will eventually exhibit observable symptoms such
as memory loss and language difficulties after years of brain alterations.
Usually, people with AD endure their symptoms for years. The severity
of symptoms tends to worsen over time, impairing an individual’s
capacity to carry out daily tasks. As there is presently no known
cure for AD, existing therapies concentrate on slowing the disease’s
progression to its most advanced state. To enhance patients’ quality
of life and more effectively handle the years in which they become
incapable of making decisions (Farina et al., 2020; Odusami et al.,
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2023; Ávila-Jiménez et al., 2023; Prasath and Sumathi, 2024). This
research describes a unique DL-based technique for the early detection
of AD. The study intends to test the approach’s usefulness in diagnosing
early-stage AD using brain MRI data. Individuals aged 65 and older are
more vulnerable to AD in developed countries (Sosa-Ortiz et al., 2012;
Fathi et al., 2022; Diogo et al., 2022).

According to projections, about 0.64 billion of people worldwide
will be analyzed with AD between now and 2050. This condition not
only offers substantial social and economic issues, as evidenced by
the accompanying material, but it also has terrible consequences for
those afflicted and their families, who carry the tremendous burden
of providing care for the patient. There are several methodologies
for establishing a diagnosis when considering computer-aided diagno-
sis systems. These procedures include various cognitive, neurological,
and psychological examinations, as well as the minor mental state
(MMS) assessment and the Modified minor mental evaluation. Several
technical and biological exams can be performed in addition to these
tests to boost the diagnostic procedure. Through lumbar puncture, for
example, biomarkers in cerebrospinal fluid (CSF) can be identified, and
various imaging modalities such as MRI, tractography (also known as
Diffusion Tensor Imaging or DTI), and Positron Emission Tomography
(PET) are utilized to supplement and enhance the detection of AD.
Numerous strategies have been developed to use biomarkers in 3D MRI
images to classify patients’ current states and forecast the progression to
AD (Leela et al., 2023). AD is diagnosed by brain monitoring techniques
such as MRI, Computer Tomography (CT) scans, and PET. MRI is a
powerful tool for detecting disease-related brain structure and function
changes. It is regarded as a valuable and crucial tool for detecting early
indicators of AD. MRI has several benefits because it does not require
any surgical procedures and enables noninvasive and comprehensive
brain imaging. Its high-resolution imaging capabilities, capacity to cap-
ture structural alterations in the brain, and role in monitoring disease
progression make it an invaluable tool for clinicians, researchers, and
patients (Lakhan et al., 2023).

In the last few years, Machine Learning (ML) and DL methods
have been offered, adopted, and implemented for analyzing various
pictures and MRIs. These algorithms have been especially beneficial
in diagnosing health concerns and recognizing early indicators of AD.
Furthermore, they have demonstrated extraordinary ability in picture
identification and classification across a variety of sectors, including
healthcare, computer vision, and others (Jindal et al., 2021; Saini and
Marriwala, 2022; Nalini and Rama, 2022; Sharma and Guleria, 2022;
Trivedi et al., 2022). There has been tremendous growth in neuroimag-
ing data over the last few decades, greatly aiding in characterizing
AD utilizing ML and DL approaches. Researchers have used similar
approaches to obtain encouraging results in the individual AD diagnosis
and forecast (Nagarajan et al., 2021). To analyze AD, multiple classi-
fiers, like random forest, decision tree, and Support Vector Machine
(SVM), have been applied to specified characteristics collected from
image processing pipelines from diverse research. DL approaches have
recently emerged as a significant advancement in the medical imaging
field, delivering excellent picture categorization success rates (Ajagbe
et al., 2021). DL methods that are often employed include Convolu-
tional Neural Network (CNN), Artificial Neural Network (ANN), and
Transfer Learning. Compared to ML, DL models enable automatic ab-
straction of picture characteristics from low to high levels, significantly
facilitating feature representation (Raju et al., 2021).

Several DL methods, such as the SVM with particle swarm optimiza-
tion (PSO) and CNN, have been extensively employed to forecast the
phases of AD, displaying good performance and high accuracy (Saied
et al., 2021). The shrinking phenomena reported in the Hippocampal
area is the most thoroughly examined of these biomarkers. As a result,
various methods for classifying MRI scans for population screening
have been developed, emphasizing the hippocampus area and other
indicators in the brain. In this investigation, the claim made was sup-
2

ported in Wang et al. (2020) that exact segmentation of the total brain
volume is not required. Instead, a rough identification of the biomarker
region is sufficient, achieved through brain alignment and atlas-based
selection of the region-of-interest (ROI) (Wang et al., 2020). Following
that, traditional multimedia indexing approaches can be used to the
selected ROI by using feature-based visual signatures produced from
"engineered features" or by deploying state-of-the-art CNNs that have
successfully classified visual and multimedia data. DL approaches entail
a stage-by-stage transformation and learning of input data, resulting
in progressively complicated and abstract representations. The original
pixel matrix is abstracted and edge-encoded in applications that use
input images. Following that, the edges are organized and encoded, and
other image features are composed, resulting in a representation of the
input image (Nagarajan et al., 2022).

However, there are several difficulties in the area of damage iden-
tification. These involve the labeled data scarcity, the high complexity
of DL models, and the preference for relatively shallow DL models for
defect diagnosis, with above five hidden layers. On the other hand, CNN
models developed for ImageNet classification tasks frequently have sev-
eral layers. As CNN models for defect detection are generally shallow,
their usefulness and last accuracy of defect diagnosis predictions may
be limited. Training a sufficiently deep CNN model becomes difficult
because of the scarcity of well-managed datasets similar to ImageNet.
For addressing this problem, researchers used transfer learning in con-
junction with CNN models. They first build a deep CNN model on the
ImageNet dataset and then use the trained CNN model as a feature
extractor on smaller datasets. This strategy has shown outstanding
results (Biagetti et al., 2021). Furthermore, early or later developed
fusion techniques must be adapted to address the classification prob-
lem of AD utilizing a single MRI (SMRI) modality (such as three
different projections in SMRI) or multiple modalities, such as SMRI
and DTI. The categorization performance was improved by doing so.
Several pre-trained CNN models, including AlexNet, deepNN, ResNet-
50, VGG11, ResNet-34, SqueezeNet, DenseNet, and InceptionV3, have
outperformed others in automatically diagnosing the phases of AD
using MRI scans (Odusami et al., 2022). These pre-trained models have
been used successfully in MRI analysis and can capture critical struc-
tural information for identifying different stages of AD. This contrasts
with a system that trains a single structure entirely on MRI data.

The significance of using DL in early AD detection is that it can ac-
curately and precisely evaluate enormous amounts of medical imaging
data. They can spot tiny AD-related patterns and biomarkers that would
be hard to find using more conventional techniques. Early AD detection
allows for timely therapy and intervention, reduces the disease trajec-
tory, and successfully manages symptoms. Patients’ and their families’
quality of life could be significantly enhanced. DL models give objective
and consistent evaluations, reducing variability among healthcare prac-
titioners and institutions.DL models can swiftly and efficiently analyze
big datasets, making them ideal for screening large populations. Early
diagnosis of AD is critical for clinical trials and drug development
activities. Identifying individuals in the early disease phases allows
researchers to choose suitable candidates for testing prospective treat-
ments and therapies to reduce or stop disease development (Cheung
et al., 2022).

In summary, AD can be detected early through MRI methods,
which are compared with normal brain activities to identify AD-related
changes. DL, a subset of Artificial Intelligence and ML, is highlighted for
its role in this process. DL involves creating complex ANNs that learn
from vast data, akin to human brain functions. These networks, made of
multiple interconnected nodes, can recognize intricate patterns without
being explicitly programmed, drawing inspiration from the structure
and function of the human brain.

1.1. Motivation

To address the challenges of AD Using MRI Data, this study in-

troduces an ideal DL approach for early AD detection. The research
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proposes various DL models: CNNs without-Aug, CNNs with-Aug, a
blend of CNNs and Long Short-Term Memory (LSTM) with-Aug, mix
of CNNs and SVM with-Aug, and a Transfer Learning method utilizing
VGG16-SVM with-Aug. The effectiveness of the offered DL models is es-
timated by various evaluation metrics, including accuracy, specificity,
precision, recall, F1-score, and processing time.

The study’s methodology encompasses four primary stages. Initially,
an appropriate AD dataset is gathered. The second stage involves
data pre-processing, converting the obtained unstructured data into a
structured format suitable for the classification process. Next, feature
extraction and classification are conducted concurrently employing the
provided DL models, as mentioned in earlier models. The final stage
involves assessing these DL models’ performance based on diverse pre-
established assessment metrics. Based on this evaluation, the DL model
that demonstrates superior performance is recommended for AD early
detection.

1.2. Contributions

The paper presents an early detection approach for AD based on DL
models. The main contributions that further emphasize the novelty of
this proposed approach can be clarified in the following points:

• A new model, named AD-DL, is proposed aimed at early diagnosis
and detection of AD, as well as binary classification of AD through
DL methodologies.

• Five distinct DL architectures are proposed, which can be classi-
fied into two different strategies, namely without-Aug and with-
Aug, specifically in the AD detection context.

• The proposed AD-DL model merges DL methods with ensemble
learning, improving the accuracy and stability of its classification
capabilities.

• The effectiveness of the recommended AD-DL models is confirmed
by comparing their performance with current leading methods
depending on established assessment metrics involving accuracy,
specificity, precision, recall, F1-score, and processing time.

• Utilizing this AD-DL model, a 99.92%, 100.00%, 99.50%, 100.00%
and 99.70% for accuracy, precision, recall, specificity, and F1-
score, respectively in classification are accomplished.

• An optimal balance is achieved between testing duration and
detection effectiveness.

.3. Paper organization

The rest of the paper is organized as follows. The related work is
uggested in Section 2. The proposed model, the original CNN, and the
hree classifier models (LSTM and SVM) are shown in Section 3. Sec-
ion 4 propose and analyze the experimental outcomes of the suggested
D-DL, the comparative models, and the managerial implication. The
hole results are examined in Section 5. The conclusions and the future

ecommendations are concluded in Section 6.

. Literature review

This section comprehensively reviews the pertinent literature, show-
asing the pivotal role of ML and DL in medical research, with a specific
ocus on AD diagnosis. It highlights how advanced DL techniques
re increasingly becoming integral in various stages of AD identifi-
ation, particularly through imaging analysis. This review delves into
he utilization of diverse feature extraction methods, spotlighting the
utomated frameworks that leverage biomarker techniques. It also ex-
mines the autonomous capabilities of DL in processing and extracting
eatures from biomarkers, thereby creating sophisticated models adept
t detecting AD and its progression stages. The section further explores
ommonly employed techniques in Alzheimer’s classification, such as
3

VM, ANN, and deep neural network (DNN), underscoring the efficacy
of DL in the diagnosis and classification of AD (Kishore and Goel, 2023;
Diogo et al., 2022; Jo et al., 2019).

In 2016, Ortiz et al. (2016), applied DL method to distinguish
between AD, MCI, and non-converting (NC) subjects. They utilized the
Automated Anatomical Labeling (AAL) software to divide the brain
into three-dimensional patches, which served as training data for their
DNNs. The team employed four different voting algorithms in the
prediction phase to enhance the model’s accuracy. Their innovative
approach resulted in an impressive classification accuracy of 90.00% in
distinguishing NC from AD subjects. Following that, Sarraf and Tofighi
(2016) employed CNNs to detect AD from brain MRI data. This type of
medical information holds great significance as it serves as a basis for
creating predictive models or algorithms that distinguish AD symptoms
from those of healthy individuals and determine the phases of the
disease. The authors utilized the ADNI dataset, comprising 43 images
for validation, to conduct their research. With a mean accuracy of
96.85%, the authors could effectively diagnose AD using CNN.

After that, in 2018, Islam and Zhang (2018) developed a CNN
model that utilizes brain MRI data to detect AD. They compared their
model to other pre-trained DL approaches, such as ADNet, InceptionV4,
and ResNet, using 416 photos from the OASIS dataset. Their approach
outperformed earlier methods that relied on binary classification and
provided the ability to differentiate between different stages of AD in
early-stage diagnosis. The study results indicated that the CNN model
surpassed the other approaches, achieving impressive performance met-
rics, involving accuracy, F1-score, precision, and recall, with values of
93.00%, 94.00%, 94.00%, and 92.00%, respectively.

And in 2019, Jo et al. (2019)in their study conducted a com-
parative study on the efficacy of traditional ML and DL methods in
early AD detection and in predicting the advancement from Mild
Cognitive Impairment (MCI) to AD. They examined 16 studies, where
4 combined traditional ML with DL, and 12 solely utilized DL. The
combined approach yielded a 96.00% efficiency in feature selection and
an 84.20% accuracy for predicting MCI to AD conversion. Specifically,
using CNNs in DL achieved similar accuracies in feature selection and
MCI to AD conversion prediction. The study also found that combining
neuroimaging and fluid biomarkers could further enhance classification
performance. Additionally, Lee et al. (2019) applied multimodal Recur-
rent Neural Networks (RNNs) to detect the progression from MCI to
AD. They incorporated cross-sectional neuroimaging, longitudinal CSF
analysis, and measurements of cognitive performance in their model to
enhance predictive accuracy. The research demonstrated that while a
single modality led to 75.00% accuracy, integrating multiple modalities
improved this to 81.00%. Following that also, Ahmed et al. (2019)
utilized MRI scans to develop a streamlined CNN framework aimed at
detecting AD, specifically focusing on the left and right hippocampal
regions. To validate their approach, they employed both the Gwangju
Alzheimer’s and Related Dementias (GARD) dataset and the ADNI
dataset as separate validation sets, ultimately analyzing a combined
total of 352 GARD MRI scans and 326 ADNI MRI images.

In 2020, Yang and Liu (2020) and Rolls et al. (2020) have devel-
oped a DL algorithm focuses on the early-stage forecast of Alzheimer’s
employing fluorine Fluorodeoxyglucose PET scans. This approach, em-
ploying the CAFFE DL framework, led to the development of accurate
prediction and classification models. The Convolutional Architecture
for Fast Feature Embedding (CAFFE) extracted features from FDG
PET images, effectively classifying MCI stage features and expecting
their progression. Both healthy people’s and AD sufferers’ scans were
confidently evaluated using the generalized matrix learning vector
quantization. The study also incorporated hierarchical 2D CNN for
intra-slice information collection and a Gated Recurrent Unit (GRU)
RNN for inter-slice feature extraction. This method achieved high clas-
sification performance, as evidenced by impressive AUC values in
differentiating AD from normal cognition (NC) and MCI from NC.
A novel contrastive-based learning strategy was applied to overcome

challenges in PET image analysis. This method amplified sections of 3D
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PET images and used contrastive loss to enhance feature differentiation
between classes and reduce intra-class variations. It involved a dual-
layer convolutional module for improved visual domain recognition.
Also, in the research conducted by Pan et al. (2020a,b), they have
developed the application of DNNs in FDG-PET imaging for early AD
detection. The MiSePyNet network, effective in learning from mul-
tiple views of PET scans, merged these representations seamlessly,
enhancing reliability. The method employed separable convolution to
maintain spatial information and reduce training parameters, deviating
from traditional 3D convolution methods for 3D image processing,
which are more complex and resource-intensive. They also employed
a CNN model in conjunction with ensemble learning (EL) to diagnose
AD through MRI data analysis in their study. Utilizing 278 images from
the ADNI dataset, they compared their approach to other methods,
including 3D-SENet and PCA + SVM. The trial results demonstrated that
the combination of CNN and EL was the most effective, achieving an
accuracy rate of 85.00%.

Following that, Shi et al. (2020) introduce a new approach for
identifying individuals with AD versus those who are healthy, based on
functional connectivity (FC) among brain activity voxels. The research
indicates that FC patterns between voxels in the prefrontal lobe and
between the prefrontal and parietal lobes are key factors in predicting
AD patients with higher accuracy. This technique shows great promise
for future applications in the field. Also, Bae et al. (2020) utilized MRI
images from a diverse range of individuals regarding race, education
level, age, and gender to create a CNN-based approach for detecting
AD. To ensure accuracy, they drew upon two separate datasets —
one from Seoul National University Bundang Hospital (SNUBH) and
the other from the ADNI dataset. This allowed them to achieve an
average classification accuracy of 88.00%–89.00% and a sensitivity of
85.00%–88.00% using 195 images from each dataset. The estimated
processing time per individual was around 23–24 s. In 2021, Helaly
et al. (2021) explored various techniques for categorizing medical
images and detecting AD. The first approach involved implementing
CNN architectures to process 2D and 3D structural brain scans from the
AD Neuroimaging Initiative (ADNI) dataset, using 2D and 3D convolu-
tions. The results demonstrated that using CNN, the accuracy rates for
multi-class AD phase categorization were 95.17% for 3D and 93.61%
for 2D scans. The researchers used the pre-trained VGG19 model for
the second method, achieving a multi-class classification accuracy of
97.00% when analyzing longitudinal brain MRI data. Additionally,
Following that, Battineni et al. (2021) has developed a mechanism to
identify patients with dementia and differentiate between those with
AD and other illnesses. The study used a sample of 150 individuals
from the OASIS dataset to validate their findings. Six supervised clas-
sifiers, including gradient boosting, SVM, logistic regression, random
forests, Ada-Boosting, and naive Bayes, were combined using 10-fold
cross-validation to classify AD. The results indicated that the gradient
boosting method had the highest accuracy, at 97.58%, and a recall of
96.00%, outperforming the other classifiers.

In 2022, van Veen et al. (2022) in their study, they have developed
DL algorithms for precise clinical diagnosis from FDG-PET brain scans,
enabling a reliable comparison with conventional clinical methods in
identifying AD, MCI, or non-dementia cases. These algorithms enhance
diagnostic accuracy by detecting subtle features overlooked in stan-
dard clinical image examinations. Additionally, Subramoniam et al.
(2022) have developed a model using sliced MRI images as inputs for
residual CNNs (ResNet-101) to extract features and classify dementia
stages. Their model successfully categorized images into four classes:
moderately demented, mildly demented, very mildly demented, and
non-demented. They achieved a high accuracy of 95.32% using a
combination of three layers of CNN and three layers of Vanilla-dense
neural network, with specific activation functions. Edward Challis and
his team compared SVM classifiers with Gaussian process logistic re-
4

gression (GP-LR) and found GP-LR more effective in certain scenarios.
This research contributes to understanding and diagnosing AD, a pro-
gressive neurodegenerative condition where early detection is vital for
managing symptoms and risks. The study highlights the effectiveness of
advanced imaging and ML techniques in this area. Also, in the research
conducted by Bhadra and Kumar (2022), they proposed statistical ex-
aminations of various ML and DL models developed by researchers for
specific applications. It delved into the diverse techniques and methods
employed in these models, analyzing their effectiveness and areas of
use. The analysis included a range of modalities and approaches utilized
within the field, providing insights into the advancements and innova-
tions in machine and DL research. Alnaim and Alwakeel (2023) used a
distributed-edge-computing-based IoT framework, combined with ma-
chine learning, to effectively handle the vast data generated by medical
sensors. Their focus was on enhancing real-time responses, optimizing
data transfers, and ensuring privacy and security in IoT devices, aiming
to improve network efficiency and computation decentralization in
healthcare applications.

Following that, Alorf and Khan (2022) focused on classifying vari-
ous stages of AD using resting-state functional MRI (rs-fMRI) and DL.
AD, known for progressively impairing cognitive abilities, has been
traditionally diagnosed through binary classification methods distin-
guishing it from MCI. However, there is a gap in research regard-
ing the detailed classification of AD’s advancing phases. Addressing
this, the research introduces methods for multi-label classification of
six Alzheimer’s stages, utilizing rs-fMRI data. The approach involved
extracting the brain’s FC networks from rs-fMRI and implementing
two DL techniques: Stacked Sparse Autoencoder and Brain Connec-
tivity Graph Convolutional Network. The models’ performance was
evaluated through k-fold cross-validation, achieving an average accu-
racy of 77.13% with Stacked Sparse Autoencoders and 84.03% with
Brain Connectivity Convolutional Network. The study also included an
analysis of significant brain regions implicated in AD, leveraging the
networks’ learned weights. Key areas identified include the precentral
gyrus, frontal gyrus, lingual gyrus, and supplementary motor area.
This research contributed to a deeper understanding of AD progression
and offers new diagnostic and research possibilities through advanced
neuroimaging and DL applications.

In 2023, Shukla et al. (2023) developed DL algorithm to iden-
tify AD using a dataset of 6219 MRI images depicting the brain at
different cognitive impairment and hallucination stages. Various DL
techniques were employed, including CNN, DenseNet121, ResNet101,
and VGG16. CNN emerged as the most effective technique, with an
accuracy of 97.00% and a recall of 97.60%, accompanied by a low
loss of 0.091. Also, Sethuraman et al. (2023) proposed a state-of-the-art
automated diagnosis system for AD. The system combines customized
deep-learning models and effectively distinguishes AD from normal
cognitive conditions. With an accuracy of 96.61%, this model shows
great potential in diagnosing and treating AD. After that, Wang et al.
(2023) aimed to discover new diagnostic biomarkers for AD using
metabolomics data from Ultra Performance Liquid Chromatography
Mass Spectrometry (UPLC-MS/MS) for developing DL predictive tools.
It involved 177 individuals, including 78 AD patients and 99 cogni-
tively normal (CN) participants, from the ADNI cohort. The research
utilized 150 metabolomic biomarkers, and feature selection was con-
ducted using the Least Absolute Shrinkage and Selection Operator
(LASSO), which identified 21 significant metabolic biomarkers. These
biomarkers were used to construct multilayer feedforward neural net-
works through the H2O DL function, dividing the data into 70.00%
for training and 30.00% for validation. The most effective DL model
featured two layers and 18 neurons, achieving an accuracy of 88.10%,
F1-score of 89.20%, and AUC of 87.30%. Key findings highlighted
the role of metabolomic biomarkers in glucose and lipid metabolism,
particularly bile acid metabolites, and their association with genetic
and clinical markers of AD, cognitive assessments, and hippocampus

volume. The study concluded that the new metabolomic biomarkers
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were promising for early AD diagnosis, risk stratification, and early
intervention in at-risk patients.

Additionally, Kishore and Goel (2023) aimed to develop a DNN for
diagnosing AD and categorizing its stages using Fluorodeoxyglucose
PET scans. FDG-PET is an effective diagnostic tool for detecting glucose
metabolism anomalies in the brains of AD patients. The researchers
created a DNN to differentiate between subjects with AD, stable MCI
(sMCI), progressive MCI (pMCI), and CN individuals. They collected a
total of 83 FDG-PET scans from the ADNI database, comprising 21 CN
subjects, 21 sMCI subjects, 21 pMCI subjects, and 20 AD subjects. The
method achieved exceptional accuracy rates: 99.31% for CN versus AD,
99.88% for CN versus MCI, 99.54% for AD versus MCI, and 96.81% for
pMCI versus sMCI. These results demonstrate the proposed method’s
significant generalization ability and its effectiveness in predicting the
conversion of MCI to AD, even without direct information. The study
concludes that FDG-PET, a well-known biomarker, can effectively iden-
tify AD using transfer learning in DNNs. This approach shows promise
for improving diagnostic accuracy and early detection of AD and its
various stages.

Based on the previous studies, it can be said that the data size
is relatively small. Furthermore, the outcomes may be more suitable
for dealing with medical data. Dealing with human life, medical, and
disease data is delicate and demands high accuracy. As a result, these is-
sues will be addressed in this study by working with larger data sets and
generating results that are more accurate and superior. Consequently,
this work aims to investigate and compare multiple DL models for early
AD diagnosis to find the best DL model among them that performs
better than previous studies in the same field. Section 3 describes using
two strategies to implement distinct DL models.

3. Proposed model

The paper describes a unique approach for detecting early on using
binary techniques. The approach is made up of several phases, as
shown in Fig. 1. MRI pictures go through a preprocessing pipeline
in the first data preparation phase, including data resizing, labeling,
normalization, and color modification. In the second phase, training
and testing sets are created from the preprocessed data, which are
utilized to develop and train the proposed DL models. The third phase
is the study of the DL models to suggest DL models include tasks
for automated feature extraction and classification. Additionally, the
study suggests CNNs-without-Aug, CNNs-with-Aug, CNN-LSTM-with-
Aug, CNNs-SVM-with-Aug, and Transfer learning using VGG16-SVM-
with-Aug. The principal purpose of using these models is to discover
the one that delivers the best balance of testing time and detection
accuracy.

3.1. CNNs-without-Aug

The CNN is a form of binary perceptron (Yamashita et al., 2018).
Unlike a basic neural network, a CNN can learn complicated features,
making it extremely useful in image classification, object recognition,
and medical picture analysis. A CNN’s core premise is its capacity to
extract local features from higher-level inputs and move them down
to lower layers for more intricate feature representation. A CNN incor-
porates convolutional, pooling, and fully connected (FC) layers. Fig. 2
depicts a standard CNN architecture with these layers.

A set of kernels is incorporated in the convolutional layer to produce
a tensor of feature mappings. These kernels employ strides to convolve
the full input, producing output volume dimensions that are integers.
The striding procedure causes the dimensions of the input volume of the
convolutional layer to be reduced. In order to keep the input volume’s
size with low-level features, zero padding is essential to pad an input
volume with zeros. The convolutional layer’s equation is as follows:

∑∑
5

𝐹 (𝑖, 𝑗) = (𝐼 ×𝐾)(𝑖, 𝑗) = 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛). (1)
where, 𝐹 is a 2D feature map’s output , 𝐼 is the input matrix, and 𝐾
is a 2D filter with a size of 𝑚 × 𝑛. 𝐼 × 𝐾 stands for the convolutional
layer’s operation. The Rectified Linear Unit (ReLU) layer is used to
increase non-linearity in feature maps. ReLU computes activation by
maintaining a zero threshold input. It is represented mathematically in
the following equation:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥). (2)

To lessen the parameter number, the pooling layer downsamples
an input dimension that has been specified. The most often used
method, max pooling, produces the highest value within a given input.
The FC layer is employed as a classifier to categorize data from the
convolutional and pooling layers. The CNN model was employed with
multiple convolutional and pooling layers to extract features from the
preprocessed photos. The model has the following layers:

• Rescaling layer: This preprocessing layer rescales the input values
to a new range. The scale was set to 1/255, which converts the
input from [0, 255] to [0, 1]. The rescaling layer gets an input
tensor with the shape (224, 224, 3), and its output shape matches
the input shape.

• Convolutional layer (Con2D): This layer employs 16 filters of size
3 ∗ 3 and employs the ReLU activation function, as mathemati-
cally represented in Eq. (2).

• Max-pooling layer (MaxPooling2D): This layer selects the maxi-
mum output value within a neighborhood specified by a pool size
of 2 ∗ 2. As previously said, it lowers the spatial dimensionality
of the feature maps created by the convolutional layer. If an
activation map has a size of W ∗ W ∗ D, a pooling kernel of spatial
dimension F, and a stride S, the size of the output volume can be
calculated using the following formula:

Output size = 𝑊 − 𝐹
𝑆

+ 1. (3)

• Another Convolutional layer: This layer is made up of 32 filters
of size 3 ∗ 3 that use the ReLU activation function.

• Another max-pooling layer is used, this time with a pool size of
2 *2.

• Dropout layer: A 0.25 dropout rate dropout layer is used. Dropout
prevents overfitting by randomly setting the outgoing edges of
concealed units to 0 during training. A dropout rate of 0.25
indicates that there is a 25.00% possibility that the output of a
specific neuron will be driven to 0.

• Another convolutional layer: This layer has 64 filters with 3 ∗ 3
size and uses the ReLU activation algorithm.

• Another max-pooling layer is implemented: A max-pooling layer
with a pool size of 2 ∗ 2 is used.

• Another dropout layer: The probability of this dropout layer is
0.20.

• Flattened layer: The flattened layer turns the previous layer’s 2D
feature maps into a 1D vector.

• Dense layer: With 128 units and the ReLU activation function,
this completely connected layer is dense. It takes into account all
input neurons for each output neuron.

• Another dense layer: This dense layer has 64 units and is activated
by the ReLU function.

• The last dense layer is made up of 2 units and uses the softmax
activation function. The softmax function generates a probability
distribution over two classes, with values ranging from 0 to 1
and adding up to 1. It can be stated numerically as the following
equation :

𝑓𝑗 (𝑍) =
𝑒𝑍𝑗

∑

𝑘 𝑒𝑍𝑘
. (4)

𝑍 represents a vector of values in this equation, and 𝑓𝑗 (𝑍) com-
putes the exponential of the (𝑗 − 𝑡ℎ) element of 𝑍 divided by the
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Fig. 1. The proposed model for early detection of AD.
Fig. 2. CNN architecture.
total of the exponentials of all elements in 𝑍. This ensures that
the output values span from 0 to 1 and add up to 1, resulting in
a probability distribution.

Overall, the proposed CNN model architecture has 13 layers in total, as
shown in Fig. 3

3.2. CNNs-with-Aug

Data augmentation is a method utilized to extend a dataset by
implementing diverse changes to current data, resulting in the creation
of additional samples (Helaly et al., 2021; Battineni et al., 2021; Sarraf
and Tofighi, 2016). The primary objective of augmentation is not only
to augment the sample count of the dataset but also to provide diverse
variants that mitigate the risk of overfitting and improve the model’s
capacity to generalize when confronted with unfamiliar images. In
order to implement Data Augmentation, the ImageDataGenerator mod-
ule from Keras is employed, which provides a convenient method for
supplementing data without incurring substantial computational costs.
By utilizing the ImageDataGenerator, batches of tensor image data are
successfully generated in real-time, integrating data augmentation tech-
niques. This methodology ensures that the proposed model is exposed
6

to a wide range of data fluctuations in every iteration, effectively mit-
igating the risk of overfitting. In addition, using ImageDataGenerator
enhances memory efficiency by loading images in groups instead of all
images simultaneously. The study used specific augmentation methods,
including random picture rotations spanning from 0 to 90 degrees, ran-
dom horizontal and vertical flips, random magnification, and random
shifting of images. In this study, the CNN model is employed, as recom-
mended in Fig. 3, making minor adjustments to the input shape (128,
128, 3) and the Dropout layers to be as in Fig. 4. The outcomes section,
as depicted in Fig. 4, showcases the performance of the model above,
incorporating the aforementioned modifications when supplemented by
data augmentation. The model has the following layers:

• The first layer in the model design is the Rescaling layer, which
is responsible for performing preprocessing tasks. The function of
this layer is to transform the input values to a different range.
In this particular instance, a scaling factor of 1/255 has been
established, which serves to convert the input values from the
interval [0, 255] to the interval [0, 1]. The Rescaling layer accepts
an input tensor of dimensions (128, 128, 3) and preserves the
same shape for its output.



Journal of King Saud University - Computer and Information Sciences 36 (2024) 101940S.E. Sorour et al.
Fig. 3. The suggested model architecture of CNNs-without-Aug.
• The subsequent layer consists of a Convolutional layer (Conv2D)
including 16 filters measuring 3 × 3 in size. The ReLU activation
function is utilized, as denoted by Eq. (2).

• Subsequently, a max-pooling layer (MaxPooling2D) is employed
with a pool size of 2 × 2, as represented mathematically by
Eq. (3).

• The subsequent layer is a convolutional layer that consists of 32
filters, each with a size of 3 × 3. This layer employs the ReLU
activation function.

• Following this, there is an additional layer of max-pooling (Max-
Pooling2D) implemented with a pool size of 2 × 2.

• The sixth layer is implemented as a dropout layer with a dropout
rate 0.20. Dropout is a method employed to mitigate the issue
of overfitting in models. During each training phase update, this
system randomly assigns a value of zero to the outbound con-
nections of hidden units, neurons located within hidden layers. A
dropout rate of 0.20 signifies that there is a probability of 20.00%
for each concealed unit to be randomly assigned a value of zero.
7

In alternative terms, it might be stated that there exists a 20.00%
likelihood that the output of a certain neuron will be compelled
to assume a value of zero.

• The subsequent layer, known as the seventh layer, consists of a
convolutional layer that utilizes 64 filters of dimensions 3 × 3.
This layer employs the ReLU activation function.

• Subsequently, a subsequent layer of max-pooling (MaxPooling2D)
is implemented, utilizing a pool size of 2 × 2.

• The ninth layer consists of an additional dropout layer with a
dropout rate of 0.25.

• The tenth layer is a flattened layer, denoted as ‘‘Flatten’’, which
transforms the two-dimensional feature maps obtained from the
preceding layer into a one-dimensional vector representation.

• Following that, there is a densely connected layer (referred to
as Dense) with 128 units and employing the ReLU activation
function. The layer under consideration is characterized by com-
plete connectivity, wherein every output neuron incorporates
information from all input neurons.
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Fig. 4. The suggested model architecture of CNNs-with-Aug.
• The subsequent layer, known as the twelfth layer, is a densely
connected layer (Dense) consisting of 64 units and utilizes the
ReLU activation function.

• The ultimate layer consists of a dense layer (Dense) comprising 2
units, employing the softmax activation function. The output of
this layer is a probability distribution encompassing two classifi-
cations within the dataset. The softmax function is a mathematical
operation that converts a vector of K real values into another
vector of K real values, ensuring that the elements of the resulting
vector add up to 1. The input values encompass a range of possi-
bilities, including positive, negative, zero, or values higher than
one. However, the softmax function is employed to standardize
these input values, ensuring that they fall within the range of 0
to 1. The mathematical representation is given by Eq. (4).

Overall, the suggested CNN model architecture of CNNs-with-Aug is
shown in Fig. 4
8

3.3. CNNs-LSTM-with-Aug

This section will comprehensively elucidate the operational mech-
anisms of LSTM. Subsequently, the process of integrating LSTM with
CNNs will be explicated in order to facilitate the preparation for tasks
related to image classification. The LSTM architecture, specifically the
one denoted as LSTM (Yu et al., 2019; Staudemeyer and Morris, 2019;
Smagulova and James, 2019), has been developed to improve the
performance of RNNs by mitigating the problems of gradient vanishing
and exploding. Instead of utilizing traditional RNN units, LSTM offers
memory blocks as a proposed solution. The primary differentiation
between LSTM and RNNs resides in including a cell state, which enables
long-term information retention. The LSTM network can effectively
retrieve and integrate information from earlier time steps to the current
time step. The system consists of three gates: an input gate, a "forget"
gate, and an output gate. The present input is symbolized as 𝑥 , while
𝑡
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Fig. 5. LSTM architecture.
the preceding and updated cell states are indicated as 𝑐𝑡−1 and 𝑐𝑡,
correspondingly. The present and previous outputs are denoted as ℎ𝑡
and ℎ𝑡−1, respectively. The interior architecture of the LSTM model is
depicted in Fig. 5.

The subsequent equations illustrate the input gate’s operational
principle in LSTM:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (5)

𝐶̃𝑡 = tanh(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖), (6)

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡, (7)

𝑓𝑥 = 1
1 + 𝑒−𝑥

= 𝑒𝑥

𝑒𝑥 + 1
, (8)

𝑓𝑥 = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
, (9)

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ). (10)

where Eq. (5) is utilized to quantify the degree to which information
from ℎ𝑡−1 and 𝑥𝑡 is integrated. The objective above can be accomplished
by subjecting these values to a sigmoid layer, as denoted by Eq. (8).
Subsequently, the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡
undergo a hyperbolic tangent activation function, denoted as a tanh
layer, which can be mathematically expressed as Eqs. (9) and (6) is
then used to gain additional information. The output obtained from
the hyperbolic tangent layer is represented as 𝐶̃𝑡. The equation denoted
as (7) integrates the data from the present input, 𝐶̃𝑡, and the previous
long-term memory, ̃𝐶𝑡−1, in order to modify the existing cell state,
𝐶̃𝑡. The symbols 𝑊𝑖 and 𝑏𝑖 are used to denote weight matrices and
the bias term of the input gate in the context of LSTM networks. The
selective transmission of information is facilitated by incorporating
a sigmoid layer, dot product, and the forget gate inside the LSTM
architecture. Eq. (10) integrates the weight matrix 𝑊𝑓 , offset 𝑏𝑓 , and
sigmoid function to ascertain the decision of whether to discard per-
tinent information from the preceding cell, contingent upon a certain
probability. To summarize, Eqs. (5)–(10) are fundamental components
within the LSTM architecture. These equations are responsible for gov-
erning the processes of input integration, selective transmission, and
probable forgetting of prior cell state information. The states needed
for continuance by the ℎ𝑡−1 and 𝑥𝑡 inputs following Eqs. (11) and (12)
are specified by the output gate of LSTM. The state decision vectors
9

that convey new information, 𝐶𝑡−1, across the tanh layer are found and
multiplied to get the final output.

𝑂𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜), (11)

ℎ𝑡 = 𝑂𝑡 tanh(𝐶𝑡), (12)

where 𝑊𝑜 and 𝑏𝑜 are the output gate’s LSTM bias and weighted matri-
ces, respectively.

The equation referenced pertains to the LSTM architecture, a variant
of RNN models. The calculation of the hidden state at a specific time
step in an LSTM cell is represented by the equation: The equation for
the hyperbolic tangent function is given Eq. (12). The following is an
analysis of the equation: The variable ℎ𝑡 denotes the concealed state
or output at a specific time step, denoted as t. The statement above
encapsulates pertinent data from previous observations and exerts an
impact on future prognostications. The term 𝑂𝑡 refers to activating the
output gate at a specific time step, denoted as 𝑡. The output gate is
responsible for regulating the extent to which the memory of the cell
is made accessible to either the subsequent layer or the output. The
computation is performed by considering the present input and the
preceding hidden state. Cell state, indicated by 𝐶𝑡, refers to the state or
memory of a cell at a specific time step, denoted as 𝑡. The cellular state
is accountable for storing and transmitting information across various
temporal intervals. The LSTM model possesses the capability to make
selective decisions regarding the retention or omission of information,
which is contingent upon both the input and the activation of the gating
mechanisms. The hyperbolic tangent activation function, commonly
denoted as tanh, is a mathematical function used in several fields,
such as ML and neural networks. The cell state values are compressed
within the interval of −1 to 1. The utilization of this activation function
facilitates the regulation of information propagation within the cell
state. The equation supplied allows for the computation of the latent
state at a given time step, t, by considering the activation of the output
gate and the current cell state. The statement above encapsulates the
primary mechanism through which information is transmitted within
an LSTM cell.

The hybrid CNNs-LSTM-with-Aug model, which is being suggested,
employs a fusion of CNNS and LSTM networks in order to do image cat-
egorization. The model comprises multiple layers that provide distinct
roles as follows:

• The initial layer consists of a Conv2D layer with 64 filters, each
having a size of 3 × 3. The activation function used in this layer is
the ReLU. The input tensor has a shape of (1, 128, 128, 3), which
corresponds to a single-color image with a size of 128 × 128.
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• The subsequent layer is a max-pooling layer, specifically Max-
Pooling2D, which employs a pool size of 2 × 2.

• The subsequent convolutional layer undergoes a reduction in
spatial dimensions through the implementation of this particular
layer.

• The subsequent layer is a convolutional layer (Conv2D) consisting
of 32 filters, each with a size of 3 × 3, and utilizing the ReLU
activation function.

• The subsequent layer in the architecture is a max-pooling layer
(MaxPooling2D) with a pool size of 2 × 2.

• The fifth layer is a flattening layer, denoted as ‘‘Flatten’’, which
transforms the two-dimensional feature maps obtained from the
preceding layer into a one-dimensional vector representation.

• The sixth layer consists of a LSTM layer of 100 units and employs
default hyperparameters. The function of this layer is to act as a
classifier for the model.

• The ultimate layer consists of a dense layer, specifically a dense
layer, comprising 2 units and utilizing the sigmoid activation
function. The algorithm generates a probability distribution en-
compassing the dataset’s two classes.

he overall architecture of the hybrid CNNs-LSTM-with-Aug model
omprises a total of seven layers. These layers encompass two con-
olutional layers, two max-pooling layers, a flattening layer, an LSTM
ayer, and a dense layer. The LSTM layer is preceded by multiple time-
istributed layers, which serve as wrappers enabling the application
f a layer to each individual temporal slice of the input. This feature
roves to be highly advantageous when dealing with image inputs
nd harnessing the memory capabilities of the LSTM network. Consult
ig. 6 in the included reference for a graphical depiction of the model’s
onstruction.

.4. CNNs-SVM-with-Aug

The classification of photographs has emerged as a significant sub-
ect in the contemporary era, with the objective of precisely assigning
escriptive labels to visual content. CNNs are frequently utilized in the
ield of image categorization, a well-accepted and viable methodology.
owever, one may come across inquiries regarding the application of
onventional ML methods, such as SVMs, in the context of picture
ategorization.

The SVM is a well-established classification technique capable of
ffectively addressing classification and regression problems. The soft-
are adeptly manages a wide range of variables, encompassing both

ontinuous and categorical types. The SVM algorithm constructs a
yperplane within a multidimensional space to classify distinct classes
ffectively. By means of an iterative procedure, an ideal hyperplane is
onstructed in order to minimize errors. The main goal of SVM is to
etermine the Maximum Marginal Hyperplane (MMH) that optimally
lassifies the given dataset. Hence, although CNNs are widely utilized
or picture classification, it is prudent to contemplate the utilization
f SVMs due to their distinctive skills in managing classification jobs
nd their potential effectiveness in specific situations. This paper fo-
uses on a binary classification issue comprising four distinct classes.
ence, the squared hinge loss function and softmax activation function
re employed in constructing the SVM model. The proposed model,
hich combines CNNs with SVMs and data augmentation techniques,

ntegrates convolutional and pooling layers to extract relevant charac-
eristics from preprocessed photos. Following that, the CNN’s output
ayer is transformed into SVM classifier, as elucidated earlier. The
roposed hybrid model architecture, which combines CNNs with SVMs
nd data augmentation techniques, consists of the following layers:

• The initial layer consists of a Conv2D layer with 64 filters, each
having a size of 3 × 3. The activation function used in this layer
is the ReLU. The model accepts an input tensor with dimensions
10

of (224, 224, 3). w
• The subsequent layer is a max-pooling layer, specifically Max-
Pooling2D, which employs a pool size of 2 × 2.

• The subsequent convolutional layer is responsible for decreasing
the spatial dimensions of the feature maps acquired from the
preceding layer.

• The subsequent layer is a convolutional layer (Conv2D) consisting
of 32 filters, each with a size of 3 × 3, and utilizing the ReLU
activation function.

• The subsequent layer in the architecture is a max-pooling layer
(MaxPooling2D) with a pool size of 2 × 2.

• The fifth layer is a flattening layer, denoted as Flatten, which
transforms the two-dimensional feature maps obtained from the
preceding layer into a one-dimensional vector representation.

• The last layer of the model consists of a dense layer, namely a
dense layer, with a total of 2 units. This dense layer is then trans-
formed into a SVM layer through the use of a kernel regularizer
and the utilization of L2 normalization. The softmax activation
function is applied to the output layer, as denoted by Eq. (4).
Furthermore, the squared hinge loss function is utilized in the
process of model compilation.

Overall, The proposed architecture for the hybrid CNNs-SVM-with-
ug model comprises a total of six layers. These layers include two
onvolutional layers, two max-pooling layers, a flattening layer, and
n output layer, which is a dense layer that is then transformed into an
VM layer. Fig. 7 For a visual depiction of the model architecture.

.5. Transfer learning using VGG16-SVM-with-Aug

The utilization of the VGG16 model (Rohini, 2021) is employed to
xtract characteristics from MRI data. The VGG16 architecture com-
rises several layers, commencing with a convolutional layer. The first
nput to the primary convolutional layer consists of an image with
imensions of 224 × 224 pixels. The image is subjected to a sequence of
onvolutional (conv) layers that employ specialized filters for process-
ng. The ReLU serves the dual purpose of functioning as a nonlinear
ctivation function and as a convolutional layer. The architectural
esign comprises a total of 13 convolutional layers, 5 MaxPooling
ayers, and 3 fully linked layers. The VGG-16 architecture comprises
6 layers, 13 convolutional layers, and 3 fully linked layers, which
ustify its name. The model incorporates a softmax layer at the final
utput to facilitate classification. The transfer learning technique is
mplemented by utilizing the pre-trained VGG16 model to enhance the
raining’s efficiency. The architectural depiction of VGG16 is presented
n Fig. 8 and Fig. 9. The proposed approach (Desai et al., 2021; Tun
t al., 2021; Ahmed et al., 2023) removes the final layer of VGG16 to
xtract characteristics from alternative layers, as illustrated in Fig. 10.
ollowing this, various ML methods, particularly SVMs, are utilized for
he classification stage in the presented model, as depicted in Fig. 11.

. Experimental results

In this section, The work presented includes the suggested mod-
ls’ analysis and experimental findings. The assessment of the models
ncompassed the utilization of training and testing datasets, with the
ltimate outcomes being determined by the mean value of all eval-
ation criteria. The duration allocated to training and tests was also
ocumented. The evaluation of the proposed model’s performance was
onducted using specified datasets, as outlined in Section 4.1. The
etails about workplace characteristics are outlined in Section 4.3,

hereas in Section 4.4, a comparison analysis is presented.
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Fig. 6. CNN-LSTM-model.
4.1. Description of the dataset

To evaluate the proposed models in comparison to state-of-the-
art models, data obtained from the MRI scans of the ADNI 1,1 were
employed. The dataset utilized in this research, sourced from Kaggle,
includes a total of 6400 MRI images classified into four distinct classes:
Mild-Demented, Moderate-Demented, Very-Mild-Demented, and Non-
Demented. Table 1 shows the total number of images in the dataset.
For the proposed models, it is binary classification. So, the classes
of data combined into two classes, Demented and Non- demented;
Mild-Demented, Moderate-Demented, and Very-and Mild-Demented,

1 https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-
of-images.
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are combined together as Demented and Non-Demented as it is as in
Table 2. Fig. 12 shows a visualization sample of the data. To maintain
uniformity in terms of size, quality, and color, the photos within the
dataset were subjected to preprocessing procedures, including resizing
and color alteration. Subsequently, a normalization technique was em-
ployed to ensure that all pixels were scaled to a consistent range. The
photos were appropriately labeled, with the designation "0" denoting
Non-Demented and "1" denoting Demented. The dataset underwent
a shuffling process, resulting in a division of 80.00% for training
purposes, including 5120 photos, and 20.00% for testing purposes,
encompassing 1280 images.

4.2. Working environment

The simulation results were generated using a Google collab. A
suite of programming tools, including Python, Keras, Tensorflow, and

https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
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Fig. 7. CNN-SVM-with-Aug model.

Table 1
Total number of images in AD Dataset available in Kaggle.

Class name Total image

Mild-Demented 896
Moderate-Demented 64
Very-Mild-Demented 2240
Non-Demented 3200

Table 2
Binary classification of AD Dataset.

Class name Total image

Demented 3200
Non-Demented 3200

Sklearn, were employed to accomplish the programming tasks. The
presented models’ hyperparameters and standard parameter options,
such as the chosen optimizer, loss function, and maximum number of
epochs, can be found in Table 3.
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Table 3
Hyper Parameters settings for all suggested models..

Algorithm Parameter

CNNs-without-Aug Epochs = 100
Batch size = 30
Parameters’ number = 2,129,250
Non-trainable parameters = 0
Trainable parameters = 2,129,250
Learning rate = 0.0001
Loss function = binary_Crossentropy
Optimizer = Adam

CNNs-with-Aug Epochs = 100
Batch size = 65
Parameters’ number = 6,454,626
Non-trainable parameters = 0
Trainable parameters = 6,454,626
Learning rate = 0.0001
Loss function = binary_Crossentropy
Optimizer = Adam

CNNs-LSTM-with-Aug Epochs = 25
Batch size = 16
Parameters’ number = 11,580,858
Non-trainable parameters = 0
Trainable parameters = 11,580,858
Learning rate = 0.0001
Loss function = binary_Crossentropy
Optimizer = Adam

CNNs-SVM-with-Aug Epochs = 20
Batch size = 32
Parameters’ number = 206,882
Non-trainable parameters = 0
Trainable parameters = 206,882
Learning rate = 0.0001
Loss function = Squared_hinge
Optimizer = Adam

VGG16-SVM-with-Aug Total number of features by VGG16 = 14,714,688
Non-trainable parameters = 0
Trainable parameters on SVM = 14,714,688
SVM-kernel = Linear

4.3. Evaluation metrics

The assessment of the proposed models reported in this study en-
compasses many evaluation criteria, such as recall, precision, accuracy,
and 𝐹1-score. The metrics in question are dependent on specific pa-
rameters for predictive models, particularly True Positive (𝑇𝑃 ), True
Negative (𝑇𝑁), False Positive (𝐹𝑃 ), and False Negative (𝐹𝑁). Recall
is mathematically represented by Eq. (14), which calculates the true
positives’ ratio (𝑇𝑃 ) divided by the totality of true positives (𝑇𝑃 ) and
false negatives (𝐹𝑁). This relationship is expressed mathematically as

It was used to gauge how well the classification outcomes worked.
F -measure (𝐹1) and Accuracy (𝐴𝐶𝐶) (Amigó et al., 2009) are used to
gauge how well the classification outcomes worked.
𝐹−measure gets a single score that balances both the Precision (𝑃 ) and
Recall (𝑅) concerns in one number, as shown in Eq (15).

Let 𝑑 be the datasets, where 1 ≤ 𝑖 and 𝑖 ≤ 𝑛, and 𝐹 = {𝐷, 𝑢𝐷}
be the binary classification (where 𝑅 refers to Demented, 𝑢𝐷 to non-
Demented).

Recall (𝑅) and Precision 𝑃 can be used to compute the 𝐹1 outcome
of the classification issue, as shown in Eq. (15), and Specificity is
expressed as in Eq. (17):

𝑃𝑓 =
𝑇𝑃𝑓

𝑇𝑃𝑓 + 𝐹𝑃𝑓
(13)

𝑅𝑓 =
𝑇𝑃𝑓

𝑇𝑃𝑓 + 𝐹𝑁𝑓
(14)

𝐹1 = 2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

(15)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(16)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 (17)

𝑇𝑁 + 𝐹𝑃
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Fig. 8. VGG16 model.
4.4. Comparative analysis

This section aims to estimate the suggested models’ performance
to address the problem of early AD detection by using binary classi-
fication. Different DL models were applied. The goal is to develop a
DL model that performs best regarding processing speed and detection
accuracy. CNNs is the only model available without-Aug, whereas
others are available with-Aug.

4.4.1. The performance results of CNNs-without-Aug model
This Subsection discusses the simulation results of the recommended

CNNs-without-Aug. According to Table 3, the recommended CNNs-
without-Aug is trained over 100 epochs with a 30 batch size. The sug-
gested CNNs-without-Aug accuracy, loss curves, and confusion matrix
are depicted in Fig. 13. For training, the proposed CNNs-without-Aug
13
Table 4
Evaluation metrics of the suggested CNNs-without-Aug.

Precision Recall F1-score

0 (Non-Demented) 99.00 100.00 100.00
1 (Demented) 100.00 95.00 97.00
Macro Avg. 100.00 97.00 98.00
Weighted Avg. 99.00 99.00 99.00

Specificity 100.00
Accuracy 99.22

achieved a 99.69% accuracy. Table 4 provides the suggested CNNs-

without-Aug evaluation measures in the testing stage. It scored 99.22%,

100.00%, 95.00%, 100.00%, and 97.39% for accuracy, precision, re-

call, specificity, and F1-score, respectively.
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Fig. 9. VGG16 model (Continued).
Table 5
Evaluation metrics of the suggested CNNs-with-Aug.

Precision Recall F1-score

0 (Non-Demented) 100.00 100.00 100.00
1 (Demented) 100.00 97.00 99.00
Macro Avg. 100.00 99.00 99.00
Weighted Avg. 100.00 100.00 100.00

Specificity 100.00
Accuracy 99.61

4.4.2. The performance results of CNNs-with-Aug
This Subsection depicts the experimental results of the recom-

mended CNNs-With-Aug.The recommended CNNs-With-Aug is trained
using epochs 100 with a batch size of 65, as shown in Table 3.
The suggested CNNs-With-Aug confusion matrix, accuracy, and loss
curves are depicted in Fig. 14. For training, the proposed CNNs-
With-Aug achieved a 99.85% accuracy. The proposed CNNs-With-Aug
evaluation metrics are shown in Table 5 during the testing stage.
It obtained 99.61%, 100.00%, 97.39%, 100.00%, and 98.70% for
accuracy, precision, recall, specificity, and F1-score, respectively.

4.4.3. The performance results of CNNs-LSTM-with-Aug
This Subsection depicts the experimental results of the suggested

hybrid of CNNs-LSTM-with-Aug.The suggested hybrid of CNNs-LSTM-
with-Aug is trained using epochs 25 with batch size 16 as shown
14
Table 6
Evaluation metrics of the suggested CNNs-LSTM-with-Aug.

Precision Recall F1-score

0 (Non-Demented) 100.00 100.00 100.00
1 (Demented) 100.00 99.00 100.00
Macro Avg. 100.00 100.00 100.00
Weighted Avg. 100.00 100.00 100.00

Specificity 100.00
Accuracy 99.92

in Table 3. The suggested hybrid of CNNs-LSTM-with-Aug confusion
matrix, accuracy, and loss curves are depicted in Fig. 15. For training,
the suggested hybrid of CNNs-LSTM-with-Aug achieved a 100.00%
accuracy. The suggested hybrid of CNNs-LSTM-with-Aug evaluation
metrics are shown in Table 6 during the testing stage. It obtained
99.92%, 100.00%, 99.50%, 100.00%, and 99.70% for accuracy, pre-
cision, recall, specificity, and F1-score, respectively.

4.4.4. The performance results of CNN-SVM-with-Aug
This Subsection discusses the simulation results of the suggested

CNN-SVM-With-Aug. Table 3 shows that the suggested CNN-SVM-With-
Aug is trained over 20 epochs with a 32 batch size. The suggested
CNN-SVM-With-Aug accuracy, loss curves, and confusion matrix are
depicted in Fig. 16. For training, The suggested CNN-SVM-With-Aug
achieved a 100.00% accuracy. In the testing stage, Table 7 provides
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Fig. 10. VGG16 architecture for feature extraction.
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Fig. 11. vgg16-SVM-model-architecture.
Fig. 12. AD dataset visualization: (a) Demented, (b) Non-Demented.

Table 7
Evaluation metrics of the suggested CNN-SVM-With-Aug.

Precision Recall F1-score

0 (Non-Demented) 99.00 100.00 99.00
1 (Demented) 100.00 94.00 97.00
Macro Avg. 99.00 97.00 98.00
Weighted Avg. 99.00 99.00 99.00

Specificity 100.00
Accuracy 99.14

The suggested CNN-SVM-With-Aug achieved evaluation measures. It
scored 99.14%, 100.00%, 94.00%, 100.00%, and 97.10% for accuracy,
precision, recall, specificity, and F1-score, respectively.

4.4.5. The performance results of Vgg16-SVM with-Aug
This Subsection discusses the simulation results of the suggested

Vgg16-SVM-with-Aug model. The suggested Vgg16-SVM-with-Aug is
trained according to Table 3. The suggested Vgg16-SVM with-Aug con-
fusion matrix is depicted in Fig. 17. The VGG16-SVM-with-Aug model
16
Table 8
Evaluation metrics of the suggested vgg16-SVM-With-Aug.

Precision Recall F1-score

0 (Non-Demented) 98.00 100.00 99.00
1 (Demented) 100.00 91.00 95.00
Macro Avg. 99.00 96.00 97.00
Weighted Avg. 99.00 99.00 99.00

Specificity 100.00
Accuracy 98.67

demonstrated a classification accuracy of 100.00% throughout the
training stage. In testing phase, It scored 98.67%, 100.00%, 91.20%,
100.00%, and 95.39% for accuracy, precision, recall, specificity, and
F1-score, respectively, as shown in Table 8.

4.5. Comparison with state of art models

Table 9 compares the suggested models to the most binary classifi-
cation recent models using various datasets. The suggested CNN-LSTM-
with-Aug ranked best in all performance metrics, while the proposed
CNNs-with-Aug ranked first in precision but second in accuracy, recall,
and F1-score.

Because the combination of the CNNs model and the LSTM net-
work can benefit AD early detection using MRI data, the suggested
CNNs-LSTM-with-Aug model outperformed the other models in all per-
formance measures. This hybrid architecture can increase the accuracy
and performance of the binary classification job by combining the
advantages of CNNs and LSTMs.

5. Discussion

This study detailedly evaluated five DL models for AD diagnosis
using MRI data, including CNN-without-Aug, CNNs-with-Aug, CNN-
LSTM-with-Aug, CNN-SVM-with-Aug, and VGG16-SVM-with-Aug, and
the models were assessed on diverse metrics like accuracy, sensitivity,
specificity, and precision. The research emphasizes DL’s potential in
medical imaging and its contributions to future AD detection efforts.
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Fig. 13. Visual results of the suggested CNNs-without-Aug (a) Accuracy curve of the suggested CNNs-without-Aug; (b) Loss curve of the suggested CNNs-without-Aug; and (c)
Confusion matrix of the suggested CNNs-without-Aug.
Table 9
Performance analysis of the proposed DL models versus different state-of-the-art DL models.

Model Author Database Accuracy Precision Recall F1-score Specificity

CNN Sun et al. (2022) OASIS 99.68% – – – –
Hybrid pre-trained models Sethuraman et al. (2023) ADNI 96.61% – – – –
Pre-trained model Tuvshinjargal and Hwang (2022) Kaggle 77.40% 77.40% 78.50% 77.90% –
CNN + LSTM Balaji et al. (2023) Kaggle 98.50% 94.80% 98.00% – –
Lightweight CNN Abd (El-Latif et al., 2023) Kaggle 99.22% 99.22% 99.22% 99.21% –
3D CNN Shojaei et al. (2023) ADNI 96.60% – – – –

CNN-LSTM-With-AUG 99.92% 100.00% 99.50% 99.70% 100.00%
CNNs-with-Aug The proposed models Kaggle 99.61% 100.00% 97.39% 98.70% 100.00%
CNN-Without-Aug 99.22% 100.00% 95.00% 97.39% 100.00%
CNN-SVM-with-Aug 99.14% 100.00% 94.00% 97.10% 100.00%
Vgg16-SVM-With-Aug 98.67% 100.00% 91.20% 95.39% 100.00%
17
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Fig. 14. Visual results of the suggested CNNs-With-Aug (a) Accuracy curve of the suggested CNNs-With-Aug; (b) Loss curve of the suggested CNNs-With-Aug; and (c) Confusion
matrix of the suggested CNNs-With-Aug.
Table 10 presents a comparison between the suggested models using
the ADs dataset as a basis for evaluating the performance of the
suggested models. Additionally, it provides the processing time, en-
compassing both the training and testing durations. The presence of
trade-offs between detection precision and processing time is apparent.
The CNNs-without-Aug attained a classification accuracy of 99.22%.
This model’s training and testing durations were recorded as 224 s and
4 ms, respectively. This characteristic renders it a viable option for real-
time applications. In contrast, the CNN model using data augmentation
(CNNs-with-Aug) attained a precision of 99.61%. This model’s training
and testing durations were 538 s and 7 ms, respectively. Further-
more, the CNNs-LSTM-with-Aug had a commendable accuracy rate of
99.92%. This model’s training and testing durations were recorded as
360 s and 9 ms, respectively. In a similar vein, the model known as
CNNs-SVM-with-Aug demonstrated an accuracy rate of 99.14%. This
18
model’s training and testing durations were recorded as 171 s and
11 ms, respectively. Also, In a similar vein, the model known as vgg16-
SVM-with-Aug demonstrated an accuracy rate of 98.67%. This model’s
training and testing durations were recorded as 210 s and 50 ms,

Considering the outcomes that were attained, it could be argued
that the CNNs-without-Aug model is the optimal choice for promptly
identifying AD in real-time scenarios as it is the lowest time in Pre-
dicting time. Additionally, It is first in precision and specificity. It
is also the third in accuracy, Recall, and F1-score. The Suggested
CNNs-LSTM-with-Aug has superior accuracy, precision, recall, and
F1-score for detection, and it is also third in predicting time. The
suggested CNNs-with-Aug is the first in precision and specificity,
the second in accuracy, recall, F1-score, and predicting time. The
suggested CNN-SVM–with-Aug is the first in precision and specificity;
it is also the fourth in accuracy, F1-score, Recall, and predicting time.
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Fig. 15. Visual results of the suggested hybrid of CNNs-LSTM-with-Aug (a) Accuracy curve of the suggested hybrid of CNNs-LSTM-with-Aug; (b) Loss curve of the suggested hybrid
of CNNs-LSTM-with-Aug; and (c) Confusion matrix of the suggested hybrid of CNNs-LSTM-with-Aug.
Table 10
Comparison between the proposed DL models using specific evaluation metrics.
Model Accuracy Precision Recall F1-score Specificity Training time Testing time

CNN-LSTM-With-AUG 99.92% 100.00% 99.50% 99.70% 100.00% 360 s 9 ms
CNNs-with-Aug 99.61% 100.00% 97.39% 98.70% 100.00% 538 s 7 ms
CNN-without-AUG 99.22% 100.00% 95.00% 97.39% 100.00% 224 s 4 ms
CNN-SVM-with-Aug 99.14% 100.00% 94.00% 97.10% 100.00% 171 s 11 ms
Vgg16-SVM with-Aug 98.67% 100.00% 91.20% 95.39% 100.00% 210 s 50 s
The suggested Vgg16-SVM-with-Aug is the last in all performance
measures.

Among the models, CNNs-LSTM-with-Aug emerged as superior in
swiftly detecting AD, offering high accuracy, precision, recall, and F1-
score. However, the CNNs-without-Aug model is favored for immediate
AD identification in real-time scenarios. LSTMs, with their capacity to
19
identify temporal dependencies in consecutive data, are advantageous
in AD categorization, addressing overfitting risks associated with CNNs,
especially in limited datasets. DL is crucial for early AD detection
for several reasons, including enhanced accuracy, early intervention,
objective assessment, scalability, efficiency, support in drug develop-
ment, personalized treatment plans, cost savings, and advancement
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Fig. 16. Visual results of the suggested hybrid of CNN-SVM-With-Aug (a) Accuracy curve of the suggested hybrid of CNN-SVM-With-Aug; (b) Loss curve of the suggested hybrid
of CNN-SVM-With-Aug; and (c) Confusion matrix of the suggested hybrid of CNN-SVM-With-Aug.
in research. Its precision, ability to improve patient outcomes and
contributions to healthcare and research make DL an essential tool in
combating AD. The following points illustrate some of the advantages
of relying on the CNN-LSTM architecture for AD classification:

• Hierarchical feature extraction: CNNs are ideal for capturing
spatial patterns and hierarchical features from images. CNNs may
extract relevant features from the raw MRI data and highlight
textures, edges, and local patterns that are indicative of various
brain structures or abnormalities associated with AD.

• Temporal information handling: Sequential data’s temporal de-
pendencies can be captured using LSTMs. The sequential nature
of MRI images obtained over time can be utilized by LSTMs in the
context of AD classification. By studying the sequence of images
20
and their associated metadata, if accessible, LSTMs may track the
disease progression.

• Spatial–temporal patterns incorporation: The spatial features
extracted by CNNs and the temporal dependencies captured by
LSTMs can be combined using the hybrid architecture. This en-
ables the model to represent both short-term and long-term al-
terations in the brain’s structure that might be suggestive of AD
progression.

• Contextual understanding improvement: AD is a progressive
neurodegenerative illness that gradually affects brain structures.
By combining CNNs and LSTMs, the model can understand the
context of changes in brain scans and how they evolve during the
disease’s progression, leading to more accurate classification.

• Overfitting reduction: LSTMs can assist the model in becoming
more regular and less overfitting. CNNs tend to have a huge
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Fig. 17. Confusion matrix of VGG16-SVM-with-Aug model.

number of parameters, which increases the risk of overfitting,
especially when the dataset is limited. The LSTMs’ ability to
capture temporal relationships can aid in preventing the model
from memorizing the training data.

• Interpretable features: The CNN-LSTM architecture can pro-
vide interpretable features, where the CNN component can high-
light pertinent image regions, and the LSTM component can
show how the patterns in these regions evolve over time. This
interpretability can be crucial in the medical domain.

• Adaptable to varying data sequences: The hybrid architecture
may adapt to varying numbers of MRI images for various patients,
making it a more flexible method.

• Early detection possibility: The CNN-LSTM model may have the
potential to detect subtle changes in brain structure that could
be an early sign of AD by leveraging both spatial and temporal
information, enabling timely intervention.

6. Conclusion

Prominent clinical manifestations, including notable deficits in mem-
ory, cognitive impairment, and disorientation, may serve as indicative
markers of neuronal degradation, representing an early and prevalent
indication of AD. The symptoms above gradually deteriorate over
time, negatively affecting an individual’s overall well-being. Although
a cure for AD remains elusive, the provision of timely and efficient
care has the potential to enhance the quality of life and decelerate
the condition’s advancement. MRI scans are a highly valuable dataset
utilized for detecting AD. In the area of analysis of medical images,
DL models are commonly employed. The primary objective of the
presented work was to examine and evaluate two distinct approaches
and five DL architectures in the context of AD identification. The
utilization of the CNN architecture is observed in scenarios when data
augmentation is not implemented (CNN-without-Aug). In contrast, the
utilization of data augmentation entails the implementation of four pri-
mary architectural approaches: CNNs-with-Aug, CNNs-LSTM-with-Aug,
CNNs-SVM-with-Aug, and transfer learning, including VGG16-SVM-
with-Aug. One pertinent inquiry that emerges is the reason for the
superior performance of CNNs-LSTM-with-Aug compared to alternative
architectures, including other models like CNNs-with-Aug.
21
As compared to other models, the suggested CNNs-LSTM-with-Aug
architecture performed better overall, and it is presently recommended
for the diagnosis of AD. With a negligible loss of 0.0160, the sug-
gested CNNs-LSTM-with-Aug architecture achieved 100.00% training
accuracy and 99.92% testing accuracy. These findings show that it
may effectively categorize AD cases accurately by incorporating data
augmentation techniques. With the help of LSTM layers, the suggested
CNN-LSTM-with-Aug was able to recognize temporal relationships in
image sequences, which made it appropriate for evaluating sequential
data such as movies. Its 100.00% precision means that every positive
instance was accurately recognized; its 100.00% specificity means that
every true negative was correctly identified and no false positives were
created; and its 99.50% recall indicates that the majority of positive
cases were successfully discovered. The computational efficiency of the
suggested CNNs-LSTM-with-Aug architecture is confirmed by the F1-
score of 99.70%, which indicates a strong balance between precision
and recall. It obtains its excellent performance in just 25 epochs with
a batch size of 16. In contrast, the CNN-with-Aug architecture that was
suggested used data augmentation methods to enhance the training set,
which resulted in better generalization skills. It accurately anticipated
every positive event with 100.00% precision. With a recall of 97.39%,
it demonstrates its effectiveness in recognizing positive instances, and
its specificity of 100.00% means that it accurately detected all true
negatives. Its balanced performance has been further validated with an
F1-score of 98.70%. However, in comparison with the CNN-LSTM-Aug
model, it took longer to train with a batch size of 65 and needed 100
epochs to achieve its high accuracy.

Ultimately, It can be said that these DL models represent a signifi-
cant advancement in the early diagnosis of AD by image data analysis,
which may have a favorable effect on the medical field. The proposed
DL models might develop into useful tools to help medical researchers
and healthcare practitioners classify AD with more improvement in
validation, refinement, and interpretability. Therefore, to obtain more
reliable findings for Alzheimer’s detection in the future, recently built
DL models and pre-trained deep architectures may be used. Using DL
algorithms, a few additional issues that affect people and their health
will also be concentrated on.
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